4.1. МЕТОДЫ КОНТРОЛЯ. ХИМИЧЕСКИЕ ФАКТОРЫ

Определение массовой концентрации микотоксинов в продовольственном сырье и продуктах питания. Подготовка проб методом твердофазной экстракции

Методические указания МУК 4.1.787—99

ББК 51.23 О60

Обо Определение массовой концентрации микотоксинов в продовольственном сырье и продуктах питания. Подготовка проб методом твердофазной экстракции: Методические указания.—М.: Федеральный центр госсанэпиднадзора Минздрава России, 1999.—30 с.

ISBN 5-7508-0170-5

- 1. Разработаны Федеральным центром госсанэпиднадзора Минздрава России (Скачков В. Б., Брагина И. В., Королева Н. В.) и ЗАО "БиоХимМак СТ" (ведущий научный сотрудник Васияров Г. Г., старший научный сотрудник Алексеева Г. С., старший научный сотрудник Осокин Д. М., доктор химических наук Староверов С. М.).
- 2. Утверждены и введены в действие Главным государственным санитарным врачом Российской Федерации 23 октября 1999 г.
 - 3. Введены впервые.

ББК 51.23

Содержание

1. Назначение и область применения	3
2. Способ подготовки проб	4
3. Требования безопасности	
4. Условия выполнения подготовки проб	
5. Афлатоксин B ₁ (AT–B ₁), зеараленон (ЗОН), дезоксиниваленол (ДОН) и	
Т-2 токсин (Т-2)	7
5.1. Оборудование, материалы, реактивы	7
5.2. Способ подготовки проб	
5.3. Подготовка концентрирующих патронов	
5.4. Экстракция микотоксинов	
5.5. Очистка и концентрирование проб	
6. Афлатоксин M ₁	
6.1. Оборудование, материалы, реактивы	. 14
6.2. Способ подготовки проб	. 15
6.3. Подготовка концентрирующих патронов	. 15
6.4. Подготовка проб молочных продуктов к анализу	.16
6.5. Окончательная очистка пробы	
7. Патулин	.17
7.1. Оборудование, материалы, реактивы	.17
7.2. Способ подготовки проб	. 19
7.3. Подготовка концентрирующих патронов	
7.4. Подготовка проб к анализу	.21
7.5. Концентрирование и очистка пробы	.21
Приложение 1. Рекомендуемая методика испытаний концентрирующих	
патронов Диапак	.23
Введение	.23
Общая часть	.23
1. Испытание патронов Диапак А -3 и Диапак П -3 по афлатоксину B_1 и	
зеараленону	. 24
2. Испытание патронов Диапак АУ-3 по дезоксиниваленолу и Т-2 токсину	.25
3. Испытания патрона Диапак Н	.25
4. Испытания патрона Диапак С	.26
5. Испытание патрона Диапак П-3 по патулину	.29
6. Испытание патрона Диапак С16М по афлатоксину M ₁	.29

УТВЕРЖДАЮ

Главный государственный санитарный врач Российской Федерации

Г. Г. Онищенко

Дата введения: 1 января 2000 года

4.1. МЕТОДЫ КОНТРОЛЯ. ХИМИЧЕСКИЕ ФАКТОРЫ

Определение массовой концентрации микотоксинов в продовольственном сырье и продуктах питания. Подготовка проб методом твердофазной экстракции

Методические указания МУК 4.1.787—99

1. Назначение и область применения

Настоящие методические указания устанавливают способы подготовки проб продовольственного сырья и пищевых продуктов методом твердофазной экстракции для последующего хроматографического анализа микотоксинов и предназначены для проведения лабораторных исследований безопасности пищевой продукции учреждениями госсанэпидслужбы РФ, а также для предприятий и учреждений, осуществляющих контроль качества и исследования продовольственного сырья и продуктов питания в соответствии с СанПиН 2.3.2.560—96 "Гигиенические

Издание официальное

Настоящие методические указания не могут быть полностью или частично воспроизведены, тиражированы и распространены без разрешения Департамента госсанэпиднадзора Минздрава России.

требования к качеству и безопасности продовольственного сырья и пищевых продуктов" и аккредитованных в установленном порядке.

2. Способ подготовки проб

Подготовка проб включает следующие разделы:

- экстракция объекта испытания, предусматривающая получение единого экстракта, содержащего все микотоксины, нормируемые в данном объекте по СанПиН 2.3.2.560—96;
- подготовка экстракта проб методом твердофазной экстракции, включающая предварительную очистку, концентрирование и окончательную очистку на концентрирующих патронах Диапак.

3. Требования безопасности

При работе с реагентами, растворителями и веществами необходимо соблюдать требования безопасности, установленные для работы с токсичными, едкими и легковоспламеняющимися веществами по ГОСТу 12.1.005—88.

4. Условия выполнения подготовки проб

Процессы приготовления растворов и обработки проб проводят в нормальных условиях при температуре окружающего воздуха $18 \div 22$ °C.

5. Афлатоксин B₁ (AT-B₁), зеараленон (3OH), дезоксиниваленол (ДОН) и T-2 токсин (T-2) 5.1. Оборудование, материалы, реактивы

Таблица 1

					iau	имца і
	AT	-B ₁	30	OΗ		
Оборудование, материалы, реактивы и растворы	1	2	1	2	ДОН	T-2
	вар.	вар.	вар.	вар.		
Аппарат для встряхивания проб типа АВУ-6С по ТУ 64—1—2451—78 или магнитная или механическая мешалка				+		
Весы аналитические с погрешностью взвешивания ±0,01 г				+		
Мельница типа "Циклон" QC-114				+		
Испаритель ротационный (ИР-1М2, ТУ 25—1173.102—84 или др.)				+		
Устройство для создания вакуума около –0,7 мм рт. ст. (водоструйный насос, масляный вакуумный насос, медицинский отсасыватель)	+					
Вакуумное устройство для подготовки проб (вакуумный манифолд), с при- емниками проб вместимостью не менее 10 см ³	+					
Устройство для упаривания проб в токе азота при нагревании около 40 °C (желательно суховоздушная баня)	+	+	_	-	-	_
Концентрирующий патрон Диапак А-3, ТУ 4215—002—05451931—94, 3AO "БиоХимМак СТ"		+	+	+	+	+
Концентрирующий патрон Диапак АУ-3, ТУ 4215—002—05451931—94, 3AO "БиоХимМак СТ"		_	_	-	+	+
Концентрирующий патрон Диапак П–3, ТУ 4215—002—05451931—94, ЗАО "БиоХимМак СТ"	+	+	+	+	-	_
Концентрирующий патрон Диапак Н, ТУ 4215—002—05451931—94, ЗАО "БиоХимМак СТ"	+	_	+	_	+	+

						ו וטובווווו
	AT	$AT-B_1$		PΗ		
Оборудование, материалы, реактивы и растворы	1	2	1	2	ДОН	T-2
	вар.	вар.	вар.	вар.		
Концентрирующий патрон Диапак С, ТУ 4215—002—05451931—94, ЗАО "БиоХимМак СТ"	_	+	_	+	-	_
Пинцет медицинский, 15 см				+		
Шпатель металлический или фарфоровая ложка				+		
Колбы плоскодонные конические с пробками вместимостью 50 см ³ по ГОСТу 25336	+	+	+	+	-	ı
Колбы плоскодонные конические (Эрленмейера) с пробками вместимостью 250 или 300 см ³ по ГОСТу 25336	+					
Колба Бюхнера вместимостью 500 см ³	+					
Воронка Бунзена вместимостью 200 см ³				+		
Воронка делительная вместимостью 250 см ³ по ГОСТу 25336				+		
Колбы остродонные с пробками по ГОСТу 25336 с взаимозаменяемым конусом 14/23 вместимостью 5, 10 или 25 см ³				+		
Колбы грушевидные с пробками по ГОСТу 25336 с взаимозаменяемым конусом 14/23 вместимостью 10 и 25 см ³	+	+	+	+	_	-
Цилиндры мерные вместимостью 25, 50, 100 см ³ , 2 кл, по ГОСТу 1770				+		
Микрошприц вместимостью 100 мм^3 (или пипетка с делениями по ГОСТу 20292 исполнения 4 или 5, 1-го класса точности вместимостью 1 см^3)	+					
Бумага фильтровальная (плотная, узкопористая, медленно фильтрующая для тонких осадков, типа "синяя лента")	_	_	_	_	+	+
Вата медицинская не стерилизованная, х/б				+		

МУК 4.1.787—99 Продолжение таблицы 1

	AT	-B ₁	ЗОН			
Оборудование, материалы, реактивы и растворы		2 вар.	1 вар.	2 вар.	ДОН	T-2
Ацетонитрил для жидкостной хроматографии, ОП–3 осч. по ТУ 6—09—14—2167—84, ректифицированный	вар. вар. вар. +					
Ацетон, осч, по ТУ 6—09—3513—75 ОП –2, ректифицированный	_	+	-	_	_	_
Бензол, хч, по ГОСТу 5955—75, выдержанный над Na ₂ SO ₄ , ректифицированный	+	+	+	+	-	_
Гептан, гексан, хч, по ТУ 6—09—3375—78 или петролейный эфир (фракция 70—100), хч, ректифицированный	+	+	+	+	-	_
Пропанол-2 (изопропиловый спирт), хч, по ТУ 6—09—402—75, ректифицированный	-	_	_	_	+	+
Уксусная кислота ледяная, хч, по ГОСТу 61—75	+	+	+	+	_	_
Хлороформ, медицинский, выдержанный над CaCl ₂ , ректифицированный		_	_	_	+	+
Хлористый метилен (дихлорметан), выдержанный над CaCl ₂ , ректифицированный		+	_	_	_	_
Эфир диэтиловый, выдержанный над NaOH, ректифицированный	_	+	_	_	_	_
Этилацетат (этиловый эфир уксусной кислоты), хч, по ГОСТу 22300—76, выдержанный над Na_2CO_3 и ректифицированный	-	+	_	_	-	_
Сульфат натрия, безводный, хч, по ГОСТу 4166—76	+	+	+	+	-	_
Хлорид натрия, хч, по ГОСТу 4233—77				+		
Вода дистиллированная	+					
Экстрагент – 84 % ацетонитрила в воде, 840 см ³ ацетонитрила доводятся до 1 литра водой либо получается путем ректификации с водой водноацетонитрильной смеси (1:4)	+					

			i ipo _t	אותונטב	THIC TAU.	ו ושושוייויי		
	$AT-B_1$		$AT-B_1$		30	PΗ		
Оборудование, материалы, реактивы и растворы	1	2	1	2	ДОН	T-2		
	вар.	вар.	вар.	вар.				
33 % бензола в ацетонитриле — смешать 30 см 3 бензола и 60 см 3 ацетонитрила (1 : 2)	+	+	+	+	-	_		
20% ацетонитрила в бензоле — $20\mathrm{cm}^3$ ацетонитрила разбавить бензолом до $100\mathrm{cm}^3$	+	_	_	_	ı	_		
$2\ \%$ уксусной кислоты в бензоле $-\ 2\ {\rm cm}^3$ уксусной кислоты разбавить бензолом до $100\ {\rm cm}^3$	_	_	+	_	ı	_		
5% уксусной кислоты в бензоле – $5\mathrm{cm}^3$ уксусной кислоты разбавить бензолом до $100\mathrm{cm}^3$	_	+	_	_	ı	_		
$10~\%$ этилацетата в бензоле — $10~{\rm cm}^3$ этилацетата разбавить бензолом до $100~{\rm cm}^3$	_	+	_	+	ı	_		
$25~\%$ гексана в эфире – $25~{\rm cm}^3$ гексана разбавить диэтиловым эфиром до $100~{\rm cm}^3$	_	+	_	_	ı	-		
$10~\%$ ацетона в дихлорметане — $10~{\rm cm}^3$ ацетона разбавить дихлорметаном до $100~{\rm cm}^3$	_	+	_	_	ı	_		
$20~\%$ ацетона в дихлорметане – $20~\text{cm}^3$ ацетона разбавить дихлорметаном до $100~\text{cm}^3$	_	_	_	_	+	_		

5.2. Способ подготовки проб

Определяемые микотоксины извлекают экстрагентом из пробы при соотношении масса пробы — объем экстрагента 1:5. При определении афлатоксина B_1 и зеараленона проводят очистку водноацетонитрильного экстракта на патроне Диапак A–3, концентрируют микотоксины на патроне Диапак Π –3, высушивают от остатков воды и после упаривания и перерастворения проводят окончательную очистку на патроне Диапак H (Диапак H Сучанае кукурузы и продуктов из нее). Фракционным элюированием получают две фракции, содержащие афлатоксин H и зеараленон, готовые к хроматографическому анализу.

При определении дезоксиниваленола и T-2 токсина, проводят предварительную очистку водно-ацетонитрильного экстракта на патроне Диапак АУ-3 и концентрируют упариванием досуха. После перерастворения проводят окончательную очистку на патроне Диапак Н. Фракционным элюированием получают две фракции, содержащие дезоксиниваленол и T-2 токсин, готовые к хроматографическому анализу.

Для проверки правильности проведения пробоподготовки и уточнения степени извлечения микотоксинов проводят анализ пробы методом стандартной добавки в исходный экстракт. Основные характеристики пробоподготовки методом твердофазной экстракции приведены в табл. 2.

Основные характеристики подготовки проб

Таблица 2

	Время пробо-	Степень	Относительное
Микотоксин	подготовки,	извлечения,	среднее квадратиче-
	мин.	%	ское отклонение, %
Афлатоксин В ₁	120	75	20
Зеараленон	120	70	20
Дезоксиниваленол	90	85	10
Т-2 токсин	90	85	10

Для достижения указанной степени извлечения необходимо точно выполнять требования к квалификации органических растворителей, их подготовке и приготовлению растворов, перечисленных в п. 5.1. Алгоритм поиска возможных потерь целевых микотоксинов при подготовке проб приведен в прилож. 1 к настоящим методическим указаниям.

5.3. Подготовка концентрирующих патронов

Патроны Диапак представляют собой пластиковую колонку, содержащую 1 или 3 см³ герметично упакованного сорбента.

5.3.1. Концентрирующий патрон Диапак А-3

Вскрыть выходную линию патрона Диапак А–3, сняв полимерную заглушку. Установить патрон в вертикальном положении узким концом вниз в подходящее устройство для вакуумирования и сбора элюата. Осторожно открыть полимерную крышку патрона, сформировать ровный горизонтальный верхний слой сорбента легким постукиванием по патрону и зафиксировать его с помощью небольшого ватного тампона. Подключить вакуум к устройству для вакуумирования и обеспечить подачу вакуума к патрону.

Концентрирующий патрон Диапак А-3 одноразового применения и регенерации не подлежит.

5.3.2. Концентрирующий патрон Диапак АУ-3

Подготовка концентрирующего патрона Диапак АУ-3 проводится аналогично п. 5.3.1.

Концентрирующий патрон Диапак АУ-3 одноразового применения и регенерации не подлежит.

5.3.3. Концентрирующий патрон Диапак П–3

Установить патрон Диапак Π –3 вертикально в подходящее устройство для вакуумирования и открыть верхнюю крышку. Суспендировать сорбент при перемешивании стеклянной палочкой в $10~{\rm cm}^3$ бензола, дать отстояться сорбенту и пропустить при слабом вакууме, не допуская попадания воздуха на сорбент, последовательно по $10~{\rm cm}^3$ бензола и ацетона.

Сохранив слой ацетона около 2 см, ввести пористый полимерный фильтр (имеется в комплекте) и уплотнить его палочкой по верхнему слою сорбента. Затем пропустить оставшийся ацетон и последовательно по 10 см³ экстрагента и смеси экстрагент-вода (1:1), не допуская попадания воздуха на сорбент со скоростью 2—3 капли в секунду.

Сохранив слой последнего элюента около 2 см, отключить вакуум и заглушить патрон сначала верхней крышкой, а затем (после прекращения скапывания) и нижней заглушкой. Подготовленный таким образом патрон может храниться в течение рабочего дня, а при случайном пересыхании приводится в рабочее состояние прокачиванием 10 см³ смеси экстрагент-вода (1:1).

Концентрирующий патрон Диапак Π –3 многоразового применения и подлежит регенерации по схеме, как указано выше, после проведения пробоподготовки.

5.3.4. Концентрирующий патрон Диапак Н

Снять с патрона Диапак H заглушки, пропустить через него с помощью шприца $5~{\rm cm}^3$ бензола и заглушить оба конца патрона. Подготов-

ленный таким образом патрон может храниться в течение суток при температуре не выше $25~^{\circ}$ C.

Концентрирующий патрон Диапак Н многоразового применения и подлежит регенерации по следующим схемам после проведения пробоподготовки:

- после подготовки *пробы* $\mathcal{I}T$ последовательно пропустить через патрон по 5 см³ этилового спирта, ацетона и бензола;
- после подготовки *пробы* A3 последовательно пропустить через патрон по 5 см³ ацетона и бензола.

5.3.5. Концентрирующий патрон Диапак С

Снять с патрона Диапак С заглушки, пропустить через него с помощью шприца $5~{\rm cm}^3$ бензола и заглушить оба конца патрона. Подготовленный таким образом патрон может храниться в течение суток при температуре не выше $25~{\rm ^{\circ}C}$.

Концентрирующий патрон Диапак С одноразового применения и регенерации не подлежит.

5.4. Экстракция микотоксинов

5.4.1. Зерно и зернопродукты

25 г размолотой пробы перенести в коническую колбу и залить 125 см³ экстрагента. Провести интенсивное перемешивание содержимого колбы в течение 30 мин. Экстракт отфильтровать через бумажный фильтр "синяя лента".

5.4.2. Орехи и семена масличных культур

25 г размолотой пробы перенести в колбу Эрленмейера, добавить 125 см³ экстрагента и 40 см³ гексана. Провести интенсивное перемешивание содержимого колбы в течение 30 мин. После перемешивания внести в экстракт 1 г хлорида натрия и продолжить перемешивание в течение 5 мин. Отфильтровать через бумажный фильтр "синяя лента". Отфильтрованный экстракт перенести в делительную воронку и после расслоения раствора собрать нижний водно-ацетонитрильный слой. Ацетонитрильный экстракт обезжирить 25 см³ гексана в делительной воронке вместимостью 250 см³.

Экстракт перенести в делительную воронку, добавить еще 25 см³ гептана и интенсивно перемешать. После расслоения собрать нижний водно-ацетонитрильный экстракт.

5.4.3. Масло растительное

25 г масла перенести в колбу Эрленмейера, добавить 40 см³ гексана и 125 см³ экстрагента. Провести интенсивное перемешивание содержимого колбы в течение 30 мин. После перемешивания в экстракт вне-

сти 0,2 г хлористого натрия и продолжить перемешивание в течение 3—5 мин. Экстракт перенести в делительную воронку и после расслоения смеси собрать нижний водно-ацетонитрильный слой. Ацетонитрильный экстракт обезжирить 25 см³ гексана или гептана или петролейного эфира в делительной воронке вместимостью 250 см³.

Экстракт перенести в делительную воронку, добавить еще 25 см³ гептана и интенсивно перемешать. После расслоения собрать нижний

водно-ацетонитрильный экстракт.

5.5. Очистка и концентрирование проб

5.5.1. Очистка и концентрирование пробы при определении афлатоксина B_1 и зеараленона

5.5.1.1. Предварительная очистка и концентрирование пробы

 $25~{\rm cm}^3$ обезжиренного экстракта пропустить через патрон Диапак A–3 со скоростью $2\div 3$ капли в секунду и отобрать $20~{\rm cm}^3$ элюата.

Полученный элюат объемом 20 см³ разбавить равным объемом воды. Полученный раствор пропустить через патрон Диапак Π –3 со скоростью 1—2 капли в секунду, после чего патрон промыть 5 см³ воды и продуть воздухом в течение 1 мин.

Целевую фракцию элюировать с патрона Диапак П−3 последовательно 7 см³ ацетонитрила и 7 см³ 33 %-ного бензола в ацетонитриле — со скоростью 1—2 капли в секунду. Собранный элюат пропустить через слой безводного сульфата натрия (10 г) самотеком. Колбу ополоснуть 2 см³ 33 %-ного бензола в ацетонитриле и содержимое перенести на тот же слой безводного сульфата натрия. Промыть сульфат натрия 3 см³ 33 %-ного бензола в ацетонитриле. Высушенный фильтрат упарить досуха на ротационном испарителе при температуре не выше 40 °С и немедленно перерастворить в 0,5 см³ бензола.

5.5.1.2. Окончательная очистка на патроне Диапак Н (вариант 1)

Бензольный раствор нанести на предварительно кондиционированный патрон Диапак Н. Колбу, содержавшую сухой остаток, обмыть еще 2 раза по 0,5 см³ бензола и последовательно нанести растворы на патрон Диапак Н. Все смывы с патрона отбросить.

Зеараленон элюировать с патрона Диапак Н 4 см³ 2 %-ной уксусной кислоты в бензоле и упарить досуха (до исчезновения запаха уксусной кислоты) на ротационном испарителе при температуре не выше 50 °С (**Проба 3**). Сухой остаток немедленно перерастворить в растворителе, соответствующем конечному хроматографическому определению.

Затем элюировать афлатоксин B_1 5 см³ 20 %-ного ацетонитрила в бензоле с патрона и упарить досуха в токе азота при температуре не выше

40 °C (*Проба A*). Сухой остаток немедленно перерастворить в растворителе, соответствующем конечному хроматографическому определению.

Эквивалент массы пробы, взятой на анализ афлатоксина $B_1, M_{np}, -4$ г. Эквивалент массы пробы, взятой на анализ зеараленона, $M_{np}, -4$ г.

5.5.1.3. Окончательная очистка на патроне Диапак С (вариант 2)

Рекомендуется для кукурузы и продуктов из нее.

Бензольный раствор нанести на предварительно кондиционированный патрон Диапак С. Колбу, содержавшую сухой остаток, обмыть еще 2 раза по 0,5 см³ бензола и нанести растворы на патрон Диапак С при достижении верхнего фильтра патрона уровнем предыдущей порции раствора. Все смывы с патрона отбросить.

Зеараленон элюировать с патрона Диапак С 6 см³ 10 %-ного этилацетата в бензоле и упарить досуха (до исчезновения запаха бензола) на ротационном испарителе при температуре не выше 50 °С (**Проба 3**). Сухой остаток немедленно перерастворить в растворителе, соответст-

вующем конечному хроматографическому определению.

Затем через патрон Диапак С последовательно пропустить 3 см 3 5 %-ной уксусной кислоты в бензоле и 4 см 3 25 %-ного гексана в эфире. Все элюаты отбросить. Афлатоксин B_1 элюировать с патрона 6 см 3 10 %-ного ацетона в дихлорметане. Элюат упарить досуха в токе азота при температуре не выше 40 °С (**Проба A**). Сухой остаток немедленно перерастворить в растворителе, соответствующем конечному хроматографическому определению.

Эквивалент массы пробы, взятой на анализ афлатоксина B_1 , M_{np} , -4 г. Эквивалент массы пробы, взятой на анализ зеараленона, M_{np} , -4 г.

5.5.2. Очистка и концентрирование пробы при определении дезоксиниваленола и T–2 токсина

5.5.2.1. Предварительная очистка и концентрирование пробы

 $20~{\rm cm}^3$ экстракта пропустить через патрон Диапак АУ-3 со скоростью $2\div3$ капли в секунду. Элюат собрать. Патрон промыть $5~{\rm cm}^3$ экстрагента и отфильтровать объединенные элюаты в сердцевидную колбу, фильтр промыть $2~{\rm cm}^3$ ацетонитрила, собирая промывочную жидкость в ту же колбу. Упарить досуха на ротационном испарителе при температуре около $60\div70~{\rm c}$. Упаривание повторить 2—3 раза с добавлением в колбу $3\div5~{\rm cm}^3$ пропанола- $2~{\rm unu}$ ацетонитрила до исчезновения капель воды на стенках колбы ($\mathbf{\mathit{Проба}\, \mathit{ДT}}$).

5.5.2.2. Окончательная очистка на патроне Диапак Н

Пробу $\mathcal{L}T$ растворить в 0,5 см³ хлороформа и нанести на предварительно кондиционированный патрон Диапак Н. Колбу обмыть еще

2 раза по 0,5 см 3 хлороформа и последовательно нанести растворы на тот же патрон, начав сбор фракций, содержащих T-2 токсин, в оттонную колбу. Завершить элюирование T-2 токсина 2 см 3 хлороформа в ту же колбу. Элюат упарить досуха на ротационном испарителе при температуре $40\div45$ °C и перерастворить в растворителе, соответствующем конечному хроматографическому определению T-2 токсина (*Проба T*).

Дезоксиниваленол элюировать с патрона в другую отгонную колбу 6 см³ 20 %-ного ацетона в хлороформе. Элюат упарить досуха на ротационном испарителе при температуре 40÷45 °C и перерастворить в растворителе, соответствующем конечному хроматографическому определению дезоксиниваленола (**Проба Д**).

Эквивалент массы пробы, взятой на анализ дезоксиниваленола, $M_{\rm mp}$, -4 г. Эквивалент массы пробы, взятой на анализ T–2 токсина, $M_{\rm mp}$, -4 г.

6. Афлатоксин М1

6.1. Оборудование, материалы, реактивы

Испаритель ротационный ИР-1М2 или устройство	ТУ 25—1173.102—84
для упаривания проб в токе азота	или др.
при нагревании около 40 °C	_
Центрифуга типа ЦЛН–2, или аналогичная	ТУ 5—375—4171—73
Устройство для создания вакуума около	
-0,7 мм рт. ст. (водоструйный насос, масляный	
вакуумный насос, медицинский отсасыватель)	
Вакуумное устройство для подготовки проб	
(вакуумный манифолд), с приемниками проб вместимостью не менее 10 см ³	
Концентрирующий патрон Диапак С16М,	ТУ 4215—002—
ЗАО "БиоХимМак СТ"	05451931—94
Концентрирующий патрон Диапак С,	ТУ 4215—002—
ЗАО "БиоХимМак СТ"	05451931—94
Пинцет медицинский, 15 см	
Шприц вместимостью 10 или 20 см ³ типа Луер	
Колбы плоскодонные конические с пробками,	ГОСТ 25336
вместимостью 50 см ³	
Колбы остродонные с пробками, с взаимозаме-	ГОСТ 25336
няемым конусом 14/23 вместимостью 10 или 25 см ³	
Колбы грушевидные с пробками,	ΓOCT 25336
с взаимозаменяемым конусом 14/23 вместимостью 25 см ³	
Цилиндры мерные вместимостью 50 см ³ , 2 кл,	ГОСТ 1770
или пробирка градуированная вместимостью	
15 или 20 см ³	

Микрошприц вместимостью 100 мм ³ или пипетка с делениями исполнения 4 или 5, 1-го класса точности вместимостью 1 см ³	ГОСТ 20292
Вата медицинская не стерилизованная, х/б Ацетонитрил для жидкостной хроматографии, ОП–3, осч, ректифицированный или	TY 6—09—14— 2167—84
Ацетонитрил, 1 сорт, кооператив "Криохром", г. Санкт-Петербург	
Ацетон, осч, ОП-2, ректифицированный	TV 6—09—3513—75
Гептан, гексан, хч, или петролейный эфир (марки 70—100), ректифицированный	ТУ 6—09—3375—78
Кислота лимонная, 1-водная, чда	ГОСТ 3652—29
Хлорид натрия, хч	ГОСТ 4233—66
Хлороформ медицинский, выдержанный	
над CaCl ₂ , ректифицированный	
Сульфат натрия, безводный, хч	ГОСТ 4166—76
Вода дистиллированная	

20 % ацетона в хлороформе — к 20 см³ ацетона добавить хлороформ до 100 см³ общего объема или 5 % метанола в хлороформе — к 20 см³ хлороформа добавить 5 см³ метанола, объем раствора довести хлороформом до 100 см³.

6.2. Способ подготовки проб

Афлатоксин M_1 извлекают из пробы жидкого молока пропусканием ее через патрон Диапак С16М. Затем фракцию, содержащую афлатоксин M_1 , элюируют хлороформом с патрона и, после высушивания и упаривания, проводят окончательную очистку на патроне Диапак С. Подготовленная проба готова к хроматографическому анализу.

Афлатоксин M_1 , из кисломолочных напитков и сметаны экстрагируют хлороформом в присутствии хлорида натрия и лимонной кислоты в соответствии с MУ № 4082— 86^* и, после высушивания и упаривания, проводят окончательную очистку на патроне Диапак С.

Для проверки правильности проведения пробоподготовки и уточнения степени извлечения микотоксинов проводят анализ методом стандартной добавки в исходный экстракт.

Время проведения пробоподготовки — 60 мин. Степень извлечения** — 80 %. Относительное среднее квадратическое отклонение — 10 %.

6.3. Подготовка концентрирующих патронов

, de

^{*} Методические указания по обнаружению, идентификации и определению содержания афлатоксинов и продовольственном сырье и пищевых продуктах с помощью высокоэффективной жидкостной хроматографии. Утв. МЗ СССР 20.03.86 № 4082—86.

^{**}При снижении степени извлечения афлатоксина M₁ см. прилож. 1.

6.3.1. Концентрирующий патрон Диапак С16М

Снять с патрона Диапак C16M заглушки и пропустить через него с помощью шприца последовательно по 5 см³ ацетонитрила и воды. Заглушить оба конца патрона. Подготовленный таким образом патрон может храниться в течение суток при температуре не выше 25 °C.

Концентрирующий патрон Диапак C16M одноразового применения и регенерации не подлежит.

6.3.2. Концентрирующий патрон Диапак С

Снять с патрона Диапак С заглушки и пропустить через него с помощью шприца $5~{\rm cm}^3$ бензола и заглушить оба конца патрона. Подготовленный таким образом патрон может храниться в течение суток при температуре не выше $25~{\rm ^{\circ}C}$.

Концентрирующий патрон Диапак C одноразового применения и регенерации не подлежит.

6.4. Подготовка проб молочных продуктов к анализу

6.4.1. Подготовка, концентрирование и очистка проб молока

Пробу молока 50 см 3 центрифугировать на подходящем оборудовании в течение 5 мин при 1000 об/мин. Для определения афлатоксина M_1 отобрать 20 см 3 супернатанта, избегая попадания жира.

Сухое молоко растворяется в соответствии с инструкцией или соответствующим ТУ и обрабатывается, как описано выше.

20 см³ подогретой до 40 °C подготовленной пробы молока пропустить через предварительно подготовленный патрон Диапак С16М со скоростью 3 капли в секунду. Затем патрон промыть 5 см³ дистиллированной воды и высушить продуванием воздуха в течение 1 мин. Элюаты отбросить. Патрон промыть 10 см³ гексана и вновь высушить воздухом в течение 1 мин.

Афлатоксин M_1 элюировать 6 см³ хлороформа. Собранный элюат пропустить самотеком через слой безводного сульфата натрия (3 см³). Колбу обмыть 1 см³ хлороформа и содержимое перенести на тот же слой безводного сульфата натрия. Хлороформные растворы собрать (Экстракт M).

6.4.2. Подготовка проб сметаны и кисломолочных продуктов

В коническую колбу вместимостью 250 см 3 помещают навеску 20,0 г сметаны или 40 см 3 кисломолочного напитка. Затем туда же вно-

сят 10,0 см³ водного раствора 2 г хлорида натрия и 0,24 г лимонной кислоты и 100 см³ хлороформа (все составные части предварительно подогревают до температуры 35÷38 °C). Содержимое колбы встряхивают 2÷3 мин, переносят в центрифужные стаканы и центрифугируют 15 мин при 3000÷4000 об/мин. Отделяют нижний хлороформный слой, высушивают над 10 г безводного сульфата натрия, отфильтровывают, измеряют объем фильтрата (V_{ϕ}) и упаривают до 5÷6 см³ (Экстракт M).

6.5. Окончательная очистка пробы

Экстракт M нанести на патрон Диапак C со скоростью 3÷4 капли в секунду. Промыть сульфат натрия 1 см³ хлороформа и раствор нанести на патрон Диапак С при достижении верхнего фильтра патрона уровнем предыдущей порции раствора.

Афлатоксин M₁ элюировать с патрона 10 см³ 20 %-ного ацетона в хлороформе или 7 см³ 5 %-ного метанола в хлороформе. Элюат собрать и упарить досуха на ротационном испарителе или в слабом токе азота при температуре не выше 40 °C. Сухой остаток немедленно перерастворить в растворителе, соответствующем конечному хроматографическому определению ($\Pi po \delta a M$).

Эквивалент массы пробы молока, взятой на анализ афлатоксина М₁, $M_{\text{пр}}, -20\ \text{г}.$ Эквивалент массы пробы сухого молока рассчитывается по формуле:

$$M_{np} = \frac{m}{V} \cdot 20$$
, где (6.1)

М_{пр} – эквивалент массы пробы, взятой на анализ, г;

т – масса пробы сухого молока, г;

V – объем воды для растворения пробы сухого молока, см 3 .

Эквивалент массы пробы сметаны или кисломолочных напитков, взятой на анализ, рассчитывается по формуле:

$$\mathbf{M}_{\rm np} = \frac{\mathbf{V}_{\Phi}}{100} \cdot \mathbf{m}_{\rm np},$$
 где (6.2)

 M_{np} – эквивалент массы пробы, взятой на анализ, г;

 V_{Φ} – объем фильтрата, см³;

 $m_{np}-$ масса (объем) пробы сметаны или кисломолочных напитков, г (см 3).

7. Патулин

7.1. Оборудование, материалы, реактивы

Испаритель ротационный ИР-1М2	ТУ 25—1173.102— 84 или др.
Центрифуга типа ЦЛН–2, или аналогичная Устройство для создания вакуума около –0,7 мм рт. ст. (водоструйный насос, масляный вакуумный насос, медицинский отсасыватель) Вакуумное устройство для подготовки проб (вакуумный манифолд), с приемниками проб вместимостью не менее 10 см ³ Устройство для упаривания проб в токе азота при нагревании около 40 °C (желательно суховоздушная баня)	TV 5—375—4171—73
	ТУ 4215—002—
Концентрирующий патрон Диапак П–3,	
ЗАО "БиоХимМак СТ"	05451931—94
Концентрирующий патрон Диапак С,	ТУ 4215—002—
ЗАО "БиоХимМак СТ"	05451931—94
Пинцет медицинский, 15 см	
Колбы плоскодонные конические с пробками	ГОСТ 25336
вместимостью 50 см ³	
Колбы остродонные с пробками	ΓOCT 25336
с взаимозаменяемым конусом 14/23	
вместимостью 5, 10 или 25 см ³	
Колбы грушевидные с пробками с взаимозаменяемым	ГОСТ 25336
конусом 14/23 вместимостью 25 см ³	
Пробирка градуированная вместимостью 15 или 20 см ³	ГОСТ 1770
Цилиндры мерные вместимостью 10 и 50 см ³ , 2 кл	ГОСТ 1770
Микрошприц вместимостью 100 мм ³ (или	ГОСТ 20292
пипетка с делениями исполнения 4 или	
5, 1-го класса точности вместимостью 1 см ³)	
Бумажные фильтры обеззоленные марки ФОМ	
Вата медицинская нестерилизованная, х/б	
Ацетат цинка 2-водный, чда	ГОСТ 5823
Ацетонитрил для жидкостной хроматографии,	TY 6—09—14—
ОП–3 осч, ректифицированный	2167—84
Ацетон, осч, ректифицированный, ОП–2	TY 6—09—3513—75
	ΓOCT 5955—75
Бензол, хч, ректифицированный	TOCT 4207

ГОСТ 4207

Гексацианоферат II калия (калий

железистосинеродистый) 3-водный, хч

Гептан, гексан, хч, или петролейный эфир	ТУ 6—09—3375—78
(фракция 70—100), хч, ректифицированный	
Хлороформ, медицинский, выдержанный над	
CaCl ₂ , ректифицированный	
Этилацетат (этиловый эфир уксусной кислоты), хч,	ГОСТ 22300—76
выдержанный над Na ₂ CO ₃ и ректифицированный	
Карбонат натрия, хч	ГОСТ83—79
Сульфат натрия, безводный, хч	ГОСТ 4166—76
Вода бидистиллированная	

1,5~% карбоната натрия – 1,5~ г карбоната натрия растворить в $100~{\rm cm}^3$ воды.

15~% этилацетата в бензоле — $15~{\rm cm}^3$ этилацетата разбавить бензолом до $100~{\rm cm}^3$.

30 % этилацетата в бензоле — 30 см^3 этилацетата разбавить бензолом до 100 см^3 .

Раствор Карреза I – 15,0 г гексацианоферата II калия растворить в $100~{\rm cm}^3$ волы.

Раствор Карреза II -30,0 г ацетата цинка растворить в $100~{\rm cm}^3$ воды.

7.2. Способ подготовки проб

Микотоксин патулин извлекают из проб осветленных соков и напитков пропусканием их через патрон Диапак Π –3. Затем патулин элюирут этилацетатом с патрона и после обработки раствором Na_2CO_3 , высушивания, упаривания и перерастворения проводят окончательную очистку на патроне Диапак C.

Соки и напитки с мякотью и консистентные продукты разводят водой, осветляют растворами Карреза в соответствии с ГОСТом 28038— 89^* , фильтруют и экстрагируют патулин пропусканием фильтрата через патрон Диапак Π –3. Затем патулин элюирут этилацетатом с патрона и после обработки раствором Na_2CO_3 , высушивания, упаривания и перерастворения проводят окончательную очистку на патроне Диапак C.

Подготовленные пробы готовы к хроматографическому анализу.

 $^{^{\}ast}$ Продукты переработки плодов и овощей. Метод определения микотоксина патулина. ГОСТ 28038—89.

Для проверки правильности проведения пробоподготовки и уточнения степени извлечения патулина проводят анализ методом стандартной добавки в пробу.

Время проведения пробоподготовки – 90 мин. Степень извлечения* – 60 %. Относительное среднее квадратическое отклонение – 10 %.

7.3. Подготовка концентрирующих патронов

7.3.1. Концентрирующий патрон Диапак П–3

Установить патрон Диапак П-3 вертикально в подходящее устройство для вакуумирования и открыть верхнюю крышку. Суспендировать сорбент при перемешивании стеклянной палочкой в $10~{\rm cm}^3$ бензола, дать отстояться сорбенту и пропустить при слабом вакууме, не допуская попадания воздуха, последовательно по $10~{\rm cm}^3$ бензола и ацетона.

Сохранив слой ацетона около 2 см, ввести пористый полимерный фильтр (имеется в комплекте) и уплотнить его палочкой по верхнему слою сорбента. Затем пропустить оставшийся ацетон и последовательно по 10 см^3 экстрагента (см. п. 5.1) и смеси экстрагент-вода (1:1), не допуская попадания воздуха на сорбент со скоростью 2—3 капли в секунду.

Сохранив слой последнего элюента около 2 см, отключить вакуум и заглушить патрон сначала верхней крышкой, а затем (после прекращения скапывания) и нижней заглушкой. Подготовленный таким образом патрон может храниться в течение рабочего дня, а при случайном пересыхании приводится в рабочее состояние прокачиванием $10~{\rm cm}^3$ смеси экстрагент-вода (1:1).

Перед проведением пробоподготовки через патрон Диапак Π –3 пропустить $10~{\rm cm}^3$ воды.

Концентрирующий патрон Диапак Π –3 многоразового применения и подлежит регенерации после проведения пробоподготовки по схеме его подготовки, как указано выше.

7.3.2. Концентрирующий патрон Диапак C

Снять с патрона Диапак С заглушки и пропустить через него с помощью шприца $5~{\rm cm}^3$ бензола и заглушить оба конца патрона. Подготовленный таким образом патрон может храниться в течение суток при температуре не выше $25~{\rm ^{\circ}C}$.

^{*} При снижении степени извлечения патулина см. прилож. 1. 20

Концентрирующий патрон Диапак С одноразового применения и регенерации не подлежит.

7.4. Подготовка проб к анализу

7.4.1. Подготовка осветленных соков и напитков

Отфильтровать пробу через плотный бумажный фильтр до получения 20 см 3 фильтрата (*Фильтрат П*).

7.4.2. Подготовка соков и напитков с мякотью и консистентных продуктов

Навеску пробы массой 10,0 г поместить в стеклянный стакан, смешать с небольшим количеством дистиллированной воды и количественно перенести в мерную колбу вместимостью $50~{\rm cm}^3$. В мерную колбу внести $6,0~{\rm cm}^3$ раствора Карреза I и $6,0~{\rm cm}^3$ раствора Карреза I. Содержание колбы довести дистиллированной водой до метки, тщательно перемешать и отфильтровать в мерный цилиндр через бумажный складчатый фильтр. Измерить объем фильтрата ($\mathbf{\Phi}$ ильтрат $\mathbf{\Pi}$).

7.5. Концентрирование и очистка пробы

7.5.1. Концентрирование пробы на патроне Диапак П–3

Весь объем **Фильтрата П** нанести на предварительно кондиционированный патрон Диапак Π -3 со скоростью 1—2 капли в секунду. Промыть патрон 5 см³ бидистиллированной воды. Все смывы отбросить.

Патулин элюировать с патрона 10 см³ этилацетата в колбу или мерную пробирку с пришлифованной пробкой, содержащую 5 см³ 1,5 %-ного карбоната натрия, закрыть пробкой, интенсивно перемешать и дать отстояться. Декантировать верхний этилацетатный слой, высушить его безводным сульфатом натрия (3 г) и перенести в колбу для упаривания. В колбу или пробирку, содержащую оставшийся 1,5 %-ный карбонат натрия, добавить еще 10 см³ этилацетата, перемешать и, после полного расслоения, высушивания этилацетатного слоя тем же сульфатом натрия, объединить его с первой порцией этилацетатного раствора в той же колбе для упаривания. Операцию повторить с 5 см³ этилацетата.

Упарить этилацетатный раствор на ротационном испарителе при температуре не выше 40 °C до объема около 0,5 см³ (**не упаривать досуха!**). Количественно перенести пробу в сердцевидную колбу вмести-

мостью не более 5 см 3 или в полимерную пробирку типа Эппендорф, промыв предыдущую отгонную колбу 0.5 см 3 этилацетата, и присоединить к упариваемой пробе. Пробу упарить в токе азота при температуре не более $40~^{\circ}$ С в суховоздушной бане до $0.5~^{\circ}$ см 3 и добавить к ней $2.5~^{\circ}$ см 3 бензола.

7.5.2. Окончательная очистка пробы на патроне Диапак С

Бензол-этилацетатный раствор пропустить через патрон Диапак C со скоростью $1 \div 2$ капли в секунду. Обмыть колбу еще $0.5 \div 1.0$ см³ 15 %-ного этилацетата в бензоле и нанести на патрон. Все смывы отбросить.

Патулин элюировать с патрона 6 см 3 30 %-ного этилацетата а бензоле, собирая элюат в сердцевидную отгонную колбу. Элюат упарить досуха в токе азота при температуре не выше 40 °C в суховоздушной бане.

Внимание! После упаривания пробу **немедленно** перерастворить в 100 мкл хлороформа, охлажденного до $0\div5$ °C (для TCX-анализа) или в $100\div500$ мкл охлажденной до $5\div8$ °C бидистиллированной воды, подкисленной до рН 4,0 уксусной кислотой (для ВЭЖХ-анализа) и быстро охладить до $0\div5$ °C (*Проба П*). Хранить *Пробу П* в холодильнике не более 1 ч.

Эквивалент массы пробы осветленных соков и напитков, взятой на анализ, $M_{\rm np}, -20~{\rm r},$ соков и напитков с мякотью и консистентных продуктов определяется по формуле:

$$\mathbf{M}_{\text{пр}} = \frac{\mathbf{V}_{\Phi \text{p},\Pi}}{\mathbf{50}} \cdot \mathbf{m}_{\text{пр}}, \text{где}$$
 (7.1)

 M_{np} – эквивалент массы пробы, взятой на анализ, г;

 $V_{\Phi p.\Pi}$ – объем **Фракции** Π , см³;

 m_{np} — масса пробы соков и напитков с мякотью или консистентных продуктов, г.

Приложение 1

Рекомендуемая методика испытаний концентрирующих патронов Диапак

Введение

Каждая партия концентрирующих патронов Диапак П-3, Диапак С16М, Диапак Н, Диапак С, а также партии сорбентов Диасорб А и Диасорб АУ подвергаются выходному контролю в соответствии с ТУ—4215—002—05451931—94 на их соответствие требованиям, предъявляемым к специализированным патронам для твердофазной экстракции микотоксинов. Этим метрологически обеспечивается их производство.

Применение настоящих испытаний рекомендуется проводить в следующих случаях:

- если результат проверки правильности проведения пробоподготовки методом стандартной добавки не соответствует нормативу коэффициента извлечения;
- если патроны Диапак подвергались неправильному хранению или нарушена целостность упаковки;
- в случаях дополнительного сверхнормативного использования регенерируемых патронов (Диапак H, Диапак Π –3).

Приведенные ниже методики проверки патронов Диапак позволяют выявить ошибку по стадиям пробоподготовки. При соответствии характеристик патронов Диапак нормативным требованиям следует искать ошибки в правильности подготовки растворителей и приготовлении растворов, контроле условий упаривания и перерастворения анализируемых проб.

Если среди стадий подготовки пробы присутствует подготовка на патроне Диапак С, рекомендуется начинать анализ возможной потери целевого компонента именно с этого патрона. Это связано с чувствительностью силикагеля к качеству используемых растворителей и прежде всего с содержанием в них воды. Такая специфика сильной зависимости активности патрона Диапак С от условий его хранения и качества используемых растворителей может потребовать оптимизации количества элюента, используемого при работе с этими патронами в конкретной лаборатории.

Обшая часть

Настоящая методика предназначена для метрологического обеспечения применения патронов Диапак в анализе микотоксинов и устанавливает процедуру их испытаний. Критерием качества патронов Диапак является соответствие результатов испытаний нормативам коэффициента извлечения, K_R , в модельных экспериментах в соответствии со схе-

мами элюирования, приведенными в разделах 5—7 настоящих методических указаний.

Коэффициент извлечения рассчитывают по формуле:

$$K_{R} = \frac{C' \cdot K_{d}}{C_{m}} \cdot 100$$
, где (1)

K_R − коэффициент извлечения данных микотоксинов, %;

С' – концентрация данного микотоксина, найденная в результате испытания, мкг/см³; (или S' площадь хроматографического пика, соответствующая концентрации С');

 C_{rp} – концентрация того же микотоксина, используемая для градуировки хроматографической системы, мкг/см; (или S_{rp} площадь хроматографического пика, соответствующая концентрации C_{rp});

K_d – коэффициент разведения образца.

За окончательное значение K_R принимается среднее арифметическое результатов двух параллельных испытаний, если абсолютное расхождение между ними не превышает 5 %.

Испытания проводятся относительным методом по схеме "введено—найдено", поэтому специальных требований к стандартным образцам микотоксинов не предъявляется.

1. Испытание патронов Диапак A–3 и Диапак П–3 по афлатоксину В₁ и зеараленону

Испытание патронов Диапак A—3 проводится совместно с Диапак Π —3 из-за низких концентраций афлатоксина B_1 и зеараленона, а также их температурной лабильности, приводящей к невозможности концентрирования упариванием. Патрон Диапак Π —3 может быть испытан независимо от Диапак A—3, что рекомендуется выполнять потребителю через каждые 10 проб после соответствующей регенерации по п. 5.3.3.

Приготовить из имеющихся стандартных растворов микотоксинов $1,0~{\rm cm}^3$ испытательной смеси, содержащей $0,4~{\rm mkr}$ афлатоксина ${\rm B}_1~{\rm u}$ $4,0~{\rm mkr}$ зеараленона в произвольной смеси бензола и ацетонитрила. Аликвоту смеси объемом $0,25~{\rm cm}^3$ перенести в сердцевидную колбу и упарить растворители досуха в токе азота при температуре $40~{\rm ^{\circ}C}$. Немедленно перерастворить остаток в $0,25~{\rm cm}^3$ растворителя, соответствующего конечному хроматографическому определению. Ориентировочные значения концентраций: $0,4~{\rm mkr/cm}^3$ — для афлатоксина ${\rm B}_1~{\rm u}$ $4,0~{\rm mkr/cm}^3$ — для зеараленона. Ввести раствор не менее двух раз в хроматографическую систему и рассчитать среднее арифметическое значение площадей пиков каждого из микотоксинов, $C_{\rm rp}$ ($S_{\rm rp}$).

Подготовить патроны Диапак А-3 и Диапак П-3 в соответствии с п.п. 5.3.1 и 5.3.3.

Вторую аликвоту смеси объемом $0.25~{\rm cm}^3$ упарить аналогично, перерастворить в $25~{\rm m}$ л экстрагента (смеси ацетонитрил—вода -84:16) 24

и нанести на патрон Диапак A—3 в соответствии с п. 5.1.1. Полученные 20 мл элюата сконцентрировать на патроне Диапак Π —3 в соответствии с п. 5.1.1. Концентрат перерастворить и проанализировать аналогично градуировочному эксперименту, получив значение C'(S').

Рассчитать значение K_R по формуле (1). Значение $K_d=1,25$. Коэффициент извлечения, K_R , должен быть не менее 90 % — для афлатоксина

 \hat{B}_1 и 85 % — для зеараленона.

При испытании одного патрона Диапак П-3 вторую аликвоту объемом 0,25 см 3 после упаривания перерастворить в 40 мл смеси экстрагент—вода (1:1) (смеси ацетонитрил—вода 42:58) и сконцентрировать в соответствии с п. 5.1.1. Рассчитать значение K_R , принимая $K_d = 1,00$. Коэффициент извлечения, K_R , должен быть не менее 95% – для афлатоксина B_1 и 95% – зеараленона.

2. Испытание патронов Диапак AУ-3 по дезоксиниваленолу и T-2 токсину

Приготовить из имеющихся стандартных растворов микотоксинов 1,0 см 3 испытательной смеси, содержащей по 20 мкг дезоксиваленола и T-2 токсина в произвольной смеси бензола и ацетонитрила. Аликвоту смеси объемом 0,25 см 3 перенести в сердцевидную отгонную колбу и упарить досуха на ротационном испарителе при температуре $40\div50\,^{\circ}\mathrm{C}$. Перерастворить остаток в 0,25 см 3 растворителя, соответствующего конечному хроматографическому определению. Ориентировочное значение концентраций: $20\,^{\circ}\mathrm{Mkr/cm}^3-$ для дезоксиниваленола и $T-2\,^{\circ}\mathrm{Tokcuha}$. Для градуировки хроматографической системы ввести раствор не менее двух раз и рассчитать среднее арифметическое значение площадей пиков каждого из микотоксинов, $C_{\mathrm{TD}}(S_{\mathrm{TD}})$.

Подготовить патрон Диапак АУ-3 по п. 5.3.2.

Вторую аликвоту смеси объемом 0,25 см 3 упарить аналогично, перерастворить в 20 мл экстрагента (смеси ацетонитрил—вода 84 : 16) и нанести на патрон Диапак АУ-3, в соответствии с п. 5.5.2. После упаривания досуха остаток перерастворить и проанализировать аналогично градуировочному эксперименту, получив значение C' (S'). Рассчитать значение K_R по формуле 1. Значение $K_d = 1,00$.

Коэффициент извлечения K_R должен быть не менее 95 % — для дезоксиниваленола и T—2 токсина.

3. Испытания патрона Диапак Н

Концентрирующие патроны Диапак H являются универсальными регенерируемыми патронами для окончательной очистки афлатоксина B_1 , зеараленона, дезоксиниваленола и T-2 токсина, поэтому испытание рекомендуется выполнять через каждые 10 проб после очередной регенерации по п. 5.3.4. Патроны Диапак H обеспечивают тонкую очистку указанных микотоксинов с высокими метрологическими характеристи-

ками (K_R не менее 90 %), поэтому значения K_R менее 90 % чаще всего свидетельствуют об ошибках в приготовлении элюентов или о недостаточной чистоте растворителей.

3.1. Испытание по афлатоксину B_1 и зеараленону

Сухой остаток упаренной второй аликвоты испытательной смеси по п. 1 немедленно перерастворить в 0,5 мл бензола и нанести по условиям п. 5.1.2 на подготовленный (см. п. 5.3.4) патрон Диапак Н. После элюирования и упаривания *Пробы 3* и *Пробы А* немедленно перерастворить их в 0,25 см³ растворителя, соответствующего конечному хроматографическому определению, и проанализировать аналогично градуировочному эксперименту по п. 1, получив значение C_{rp} (S_{rp}) и C' (S') по каждому из микотоксинов.

Рассчитать значение K_R по формуле (1). Значение K_d = 1,00. Коэффициент извлечение K_R должен быть не менее 90 % — для афлатоксина B_1 и зеараленона.

3.2. Испытания по дезоксиниваленолу и Т-2 токсину

Сухой остаток упаренной второй аликвоты испытательной смеси по п. 2 перерастворить в 0,5 мл хлороформа и нанести по условиям п. 5.1.2 на подготовленный патрон Диапак Н. После элюирования и упаривания *Пробу Д* и *Пробу Т* перерастворить в 0,25 см³ растворителя, соответствующего конечному хроматографическому определению, и проанализировать аналогично градуировочному эксперименту по п. 2, получив значения C_{rp} (S_{rp}) и C' (S') по каждому из микотоксинов.

Рассчитать значения K_R по формуле (1). Значение $K_d=1,00$. Коэффициент извлечения K_R должен быть не менее 90 % для дезоксиниваленола и T-2 токсина.

4. Испытания патрона Диапак С

Концентрирующие патроны Диапак С являются одноразовыми патронами для окончательной очистки афлатоксина B_1 и зеараленона, а также афлатоксина M_1 и патулина. Патроны Диапак С обеспечивают тонкую очистку указанных микотоксинов с хорошими метрологическими характеристиками ($K_R = 75 \div 90$ %). Для достижения указанных характеристик необходимо установить оптимальный объем элюирования моделированием порционного элюирования ($1 \div 3$ порции по 3 мл) целевых фракций в ходе настоящих испытаний.

Оптимальную схему элюирования, т. е. необходимое число порций по 3 мл, потребитель устанавливает по достижению суммарного коэффициента извлечения не ниже указанного норматива. Установленный

объем элюирования подлежит проверке при смене партии растворителей и их смесей, используемых для тонкой очистки микотоксинов.

4.1. Испытания по афлатоксину B_1 и зеараленону

Подготовить патрон Диапак С в соответствии с п. 5.3.5.

Сухой остаток упаренной второй аликвоты испытательной смеси по п. 1 немедленно перерастворить в 0,5 мл бензола и нанести на патрон Диапак С в соответствии с п. 5.1.3. После элюирования и раздельного упаривания трех фракций *Пробы З* и трех фракций *Пробы А* немедленно перерастворить их в 0,25 см³ растворителя, соответствующего конечному хроматографическому определению, и проанализировать аналогично градуировочному эксперименту по п. 1, получив по три значения $S_{\rm rp}$ и одному S' по каждому из микотоксинов.

Рассчитать K_R по формуле (1) для каждой из трех фракций *Проб 3* и A $K_d = 1,00$. Суммарный коэффициент извлечения K_R должен быть не менее 90 % — для афлатоксина B_1 и 85 % — для зеараленона. Определить минимально возможное число последовательных фракций, обеспечивающее суммарный K_R не ниже норматива. Найденное число фракций (от 1 до 3) и определяет оптимальный объем элюирования данных микотоксинов с патрона Диапак С данной партии с приготовленными растворителями.

Если значение суммарного K_R меньше нормативного значения, то это свидетельствует об ошибках в приготовлении элюирующих смесей и/или о недостаточной чистоте растворителей, в особенности с точки зрения содержания в них воды.

4.2. Испытание по афлатоксину M_1

Приготовить из имеющегося стандартного раствора $1,0~{\rm cm}^3$ испытательной смеси, содержащей $0,1~{\rm mkr}$ афлатоксина M_1 в произвольной смеси бензола и ацетонитрила. Аликвоту смеси объемом $0,25~{\rm cm}^3$ перенести в сердцевидную колбу и упарить раствор в токе азота при температуре $40~{\rm ^{\circ}C}$. Немедленно перерастворить остаток в $0,25\div1,0~{\rm cm}^3$ растворителя, соответствующего конечному хроматографическому определению. Ориентировочные значения концентраций афлатоксина M_1 $0,025\div0,1~{\rm mkr/cm}^3$ соответственно. Для проведения градуировочного эксперимента ввести раствор не менее двух раз в хроматографическую систему и рассчитать среднее арифметическое значение площадей пиков афлатоксина M_1 , $C_{\rm rp}$ ($S_{\rm rp}$).

Вторую аликвоту смеси объемом 0,25 см³ упарить, как описано выше, перерастворить в 6 мл хлороформа и нанести в условиях п. 6.5 на

подготовленный (см. п. 6.3.2) патрон Диапак С. После элюирования и раздельного упаривания трех последовательных фракций *Пробы М* немедленно перерастворить их в $0.25 \div 1.0$ см³ растворителя, соответствующего конечному хроматографическому определению, и проанализировать аналогично градуировочному эксперименту, получив три значения C'(S') по афлатоксину M_1 .

Рассчитать K_R по формуле (1) для каждой их трех фракций *Пробы М* $K_d = 1,00$. Суммарный коэффициент извлечения K_R для афлатоксина M_1 должен быть не менее 85 %. Найти оптимальный объем элюирования афлатоксина M_1 с патрона Диапак C по алгоритму, приведенному в п. 4.1. Там же приведен алгоритм поиска ошибок.

4.3. Испытание по патулину

Приготовить из имеющегося стандартного раствора $1,0\,\,\mathrm{cm}^3$ испытательной смеси, содержащей $4,0\,\,\mathrm{mkr}$ патулина в произвольной смеси бензола и ацетонитрила. Аликвоту смеси объемом $0,25\,\,\mathrm{cm}^3$ перенести в сердцевидную колбу и упарить растворитель в токе азота при температуре $35\div40\,\,^{\circ}\mathrm{C}$. Немедленно перерастворить остаток в $0,25\,\,\mathrm{cm}^3$ растворителя, соответствующего конечному хроматографическому определению. Ориентировочное значение концентрации патулина: $4,0\,\,\mathrm{mkr/cm}^3$. Для проведения градуировочного эксперимента ввести раствор не менее двух раз в хроматографическую систему и рассчитать среднее арифметическое значение площади пика патулина, $C_{\rm rp}$ ($S_{\rm rp}$).

Вторую аликвоту смеси объемом 0,25 см³ упарить аналогично, перерастворить в 3 мл 15 %-ного этилацетата в бензоле и нанести в условиях п. 7.5.2 на подготовленный (см. п. 7.3.2) патрон Диапак С. После элюирования и раздельного упаривания трех последовательных фракций **Пробы П** немедленно перерастворить их в 0,25 см³ растворителя, соответствующего конечному хроматографическому определению, и проанализировать аналогично градуировочному эксперименту по п. 4.3, получив три значения С' (S') по патулину.

Рассчитать значение K_R по формуле (1) для каждой их трех фракций **Пробы П**. $K_d = 1,00$. Суммарный коэффициент извлечения K_R для патулина должен быть не менее 75 %. Найти оптимальный объем элюирования патулина с патрона Диапак C по алгоритму, приведенному в п. 4.1. Там же приведен алгоритм поиска ошибок.

5. Испытание патрона Диапак П–3 по патулину

Вторую аликвоту испытательной смеси по п. 4.3 объемом 0,25 см³ после упаривания перерастворить в охлажденной до 5÷8 °C воде, подкисленной уксусной кислотой до рН 4,0, и сконцентрировать в условиях п. 7.5.1 на подготовленном (см. п. 7.3.1) патроне Диапак П–3. После элюирования и высушивания упарить этилацетатный экстракт досуха в токе азота при температуре 35÷40 °C, немедленно перерастворить в 0,25 см³ растворителя, соответствующего конечному хроматографическому определению, и проанализировать аналогично градуировочному эксперименту по п. 4.3, получив значения C_{rp} (S_{rp}) и C' (S').

Рассчитать значение K_R по формуле (1). Значение $K_d=1{,}00$. Коэффициент извлечения K_R для патулина должен быть не менее 80 %.

6. Испытание патрона Диапак С16M по афлатоксину M_1

Вторую аликвоту испытательной смеси по п. 4.2 объемом $0,25 \text{ см}^3$ после упаривания перерастворить в 20 мл 5 %-ного ацетонитрила в воде и нанести в соответствии с п. 6.4.1 на подготовленный по п. 6.3.1 патрон Диапак С16М. После элюирования и высушивания упарить хлороформный экстракт M на ротационном испарителе при температуре не выше 40 °C, немедленно перерастворить его в 0,25—1,0 см³ растворителя, соответствующего конечному хроматографическому определению, и проанализировать аналогично градуировочному эксперименту по п. 4.2, получив значения $C_{\rm rp}$ ($S_{\rm rp}$) и C' (S') для афлатоксина M_1 . Рассчитать K_R по формуле (1) $K_d = 1,00$. Коэффициент извлечения, K_R , по афлатоксину M_1 должен быть не менее 95 %.

Определение массовой концентрации микотоксинов в продовольственном сырье и продуктах питания. Подготовка проб методом твердофазной экстракции

Методические указания МУК 4.1.787—99

Редакторы Акопова Н. Е., Барабанова Т. Л., Глазунов В. М. Технический редактор Гарри Д. В.

Подписано в печать 25.11.99

Формат 60х90/16

Тираж 1000 экз.

Печ. л. 2,0 Заказ 59

ЛР № 021232 от 23.06.97 г.

Министерство здравоохранения Российской Федерации 101431, Москва, Рахмановский пер., д. 3

Оригинал-макет подготовлен к печати и тиражирован Издательским отделом Федерального центра госсанэпиднадзора Минздрава России 125167, Москва, проезд Аэропорта, 11. Отделение реализации, тел. 198-61-01

Государственное санитарно-эпидемиологическое нормирование Российской Федерации

4.1. МЕТОДЫ КОНТРОЛЯ. ХИМИЧЕСКИЕ ФАКТОРЫ

Определение массовой концентрации микотоксинов в продовольственном сырье и продуктах питания. Подготовка проб методом твердофазной экстракции

Методические указания МУК 4.1.787—99

Издание официальное

Минздрав России Москва • 1999

5. Афлатоксин B₁ (AT-B₁), зеараленон (3OH), дезоксиниваленол (ДОН) и T-2 токсин (T-2) 5.1. Оборудование, материалы, реактивы

Таблица 1

	AT	AT-B ₁ 3OH				
Оборудование, материалы, реактивы и растворы	1 вар.	2 вар.	1 вар.	2 вар.	ДОН	T-2
Аппарат для встряхивания проб типа АВУ-6С по ТУ 64—1—2451—78 или магнитная или механическая мешалка			_	+		
Весы аналитические с погрешностью взвешивания ±0,01 г				+		
Мельница типа "Циклон" QC-114				+		
Испаритель ротационный (ИР–1M2, TУ 25—1173.102—84 или др.)				+		
Устройство для создания вакуума около –0,7 мм рт. ст. (водоструйный насос, масляный вакуумный насос, медицинский отсасыватель)	+					
Вакуумное устройство для подготовки проб (вакуумный манифолд), с приемниками проб вместимостью не менее 10 см ³	+					
Устройство для упаривания проб в токе азота при нагревании около 40 °C (желательно суховоздушная баня)	+	+	_	-	-	_
Концентрирующий патрон Диапак А-3, ТУ 4215—002—05451931—94, 3AO "БиоХимМак СТ"		+	+	+	+	+
Концентрирующий патрон Диапак АУ-3, ТУ 4215—002—05451931—94, ЗАО "БиоХимМак СТ"	_	_	_	-	+	+
Концентрирующий патрон Диапак П–3, ТУ 4215—002—05451931—94, 3AO "БиоХимМак СТ"		+	+	+	_	_
Концентрирующий патрон Диапак Н, ТУ 4215—002—05451931—94, ЗАО "БиоХимМак СТ"	+	_	+	_	+	+

	продолжение та					пицы т	
	AT	-B ₁	ЗОН				
Оборудование, материалы, реактивы и растворы	1	2	1	2	ДОН	T-2	
	вар.	вар.	вар.	вар.			
Концентрирующий патрон Диапак С, ТУ 4215—002—05451931—94, ЗАО "БиоХимМак СТ"	_	+	_	+	1	ı	
Пинцет медицинский, 15 см		+					
Шпатель металлический или фарфоровая ложка	+						
Колбы плоскодонные конические с пробками вместимостью 50 см ³ по ГОСТу 25336	+	+	+	+	I	ı	
Колбы плоскодонные конические (Эрленмейера) с пробками вместимостью 250 или 300 см ³ по ГОСТу 25336	+						
Колба Бюхнера вместимостью 500 см ³	+						
Воронка Бунзена вместимостью 200 см ³	+						
Воронка делительная вместимостью 250 см ³ по ГОСТу 25336	+						
Колбы остродонные с пробками по ГОСТу 25336 с взаимозаменяемым конусом 14/23 вместимостью 5, 10 или 25 см ³	+						
Колбы грушевидные с пробками по ГОСТу 25336 с взаимозаменяемым конусом 14/23 вместимостью 10 и 25 см ³	+	+	+	+	_	-	
Цилиндры мерные вместимостью 25, 50, 100 см ³ , 2 кл, по ГОСТу 1770	+						
Микрошприц вместимостью 100 мм ³ (или пипетка с делениями по ГОСТу 20292 исполнения 4 или 5, 1-го класса точности вместимостью 1 см ³)	+						
Бумага фильтровальная (плотная, узкопористая, медленно фильтрующая для тонких осадков, типа "синяя лента")	_	_	_	_	+	+	
Вата медицинская не стерилизованная, х/б	+						

			Прод	цолже	ение тао	лицы і
	AT	$-B_1$	ЗОН			
Оборудование, материалы, реактивы и растворы	1	2	1	2	ДОН	T-2
	вар.	вар.	вар.	вар.		
Ацетонитрил для жидкостной хроматографии, ОП–3 осч. по ТУ 6—09—14—2167—84, ректифицированный				+		
Ацетон, осч, по ТУ 6—09—3513—75 ОП –2, ректифицированный	_	+	_	_	_	_
Бензол, хч, по ГОСТу 5955—75, выдержанный над Na ₂ SO ₄ , ректифицированный	+	+	+	+	_	-
Гептан, гексан, хч, по ТУ 6—09—3375—78 или петролейный эфир (фракция 70—100), хч, ректифицированный	+	+	+	+	ı	_
Пропанол-2 (изопропиловый спирт), хч, по ТУ 6—09—402—75, ректифицированный	_	_	_	_	+	+
Уксусная кислота ледяная, хч, по ГОСТу 61—75	+	+	+	+	-	-
Хлороформ, медицинский, выдержанный над CaCl ₂ , ректифицированный	_	_	_	_	+	+
Хлористый метилен (дихлорметан), выдержанный над CaCl ₂ , ректифицированный	+	+	_	_	_	-
Эфир диэтиловый, выдержанный над NaOH, ректифицированный	_	+	_	_	_	_
Этилацетат (этиловый эфир уксусной кислоты), хч, по ГОСТу 22300—76, выдержанный над $\mathrm{Na_2CO_3}$ и ректифицированный	_	+	_	_	_	-
Сульфат натрия, безводный, хч, по ГОСТу 4166—76	+	+	+	+	-	_
Хлорид натрия, хч, по ГОСТу 4233—77				+		
Вода дистиллированная				+		
Экстрагент – 84 % ацетонитрила в воде, 840 см ³ ацетонитрила доводятся до 1 литра водой либо получается путем ректификации с водой водноацетонитрильной смеси (1:4)				+		

			Πρυ	או נטד	ение тао	лицы т
	$AT-B_1$		ЗОН			1
Оборудование, материалы, реактивы и растворы	1	2	1	2	ДОН	T-2
	вар.	вар.	вар.	вар.		
$33~\%$ бензола в ацетонитриле – смешать $30~\text{см}^3$ бензола и $60~\text{см}^3$ ацетонитрила $(1:2)$	+	+	+	+	_	_
$20~\%$ ацетонитрила в бензоле – $20~{\rm cm}^3$ ацетонитрила разбавить бензолом до $100~{\rm cm}^3$	+	_	_	_	-	-
2% уксусной кислоты в бензоле – $2~{\rm cm}^3$ уксусной кислоты разбавить бензолом до $100~{\rm cm}^3$	ı	_	+	_	ı	-
5% уксусной кислоты в бензоле – $5~{\rm cm}^3$ уксусной кислоты разбавить бензолом до $100~{\rm cm}^3$	ı	+	_	_	ı	ı
$10~\%$ этилацетата в бензоле — $10~{\rm cm}^3$ этилацетата разбавить бензолом до $100~{\rm cm}^3$		+	_	+	_	-
$25~\%$ гексана в эфире — $25~{\rm cm}^3$ гексана разбавить диэтиловым эфиром до $100~{\rm cm}^3$	_	+	_	_	-	-
$10~\%$ ацетона в дихлорметане – $10~{\rm cm}^3$ ацетона разбавить дихлорметаном до $100~{\rm cm}^3$	_	+	_	_	_	_
$20~\%$ ацетона в дихлорметане – $20~{\rm cm}^3$ ацетона разбавить дихлорметаном до $100~{\rm cm}^3$	_	_	_	_	+	-