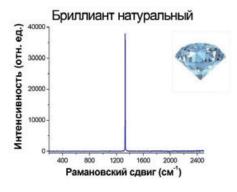
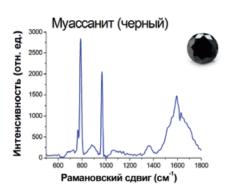
Раман спектрометры и <u>Раман м</u>икроскопы

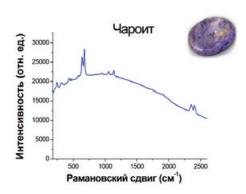
RamanLife, Россия

Определение и идентификация химических веществ – распространенная задача в области аналитической химии. Спектрометры **RamanLife**, работающие по принципу комбинационного рассеяния (КР) света (метод более известный как Рамановская спектроскопия), способны выполнять эту задачу очень легко. Будь то жидкость, твердое вещество, порошок, взвесь или гель – определение можно проводить даже через упаковку.

Линии сдвига, получающиеся при неупругом рассеянии света для каждого химического вещества уникальны, поэтому идентификация, например, с использованием базы данных спектров, не представляет проблемы. Библиотека спектров,




Настольный спектрометр RamanLife


которую можно приобрести к прибору **RamanLife** содержит более чем 24 000 спектров, а для удобства узкоспециализированных клиентов основная библиотека разбита по категориям, стоимость которых существенно ниже полной базы.

Рамановская спектроскопия безусловно является мощным инструментом для структурной идентификации молекулярных соединений и используется в различных отраслях промышленности, науки, медицины, сельского хозяйства и т.д. Наиболее эффективно сочетание двух методов – ИК-Фурье спектрометрии и КР, т.к. некоторые молекулярные колебания очень ярко проявляются в ИК и слабо в КР и наоборот. В связи с этим, спектроскопия комбинационного рассеяния может применяться не только как отдельный метод исследования, но и в сочетании с ИК для получения наиболее полного представления о природе образца.

Примеры спектров:

До недавних пор, стандартная установка для исследования Рамановского рассеяния света и люминесценции включала в себя мощный лазер, тройной спектрометр и охлаждаемый матричный фотодетектор. Все это приводило к тому, что приборы были большие и очень дорогие, вследствие чего метод получал недостаточное распространение среди специалистов. В последние годы ситуация на рынке научного приборостроения радикально изменилась, что позволило уменьшить и удешевить все компоненты Раман-люминесцентных установок. Во-первых, вместо громоздких и дорогих газовых лазеров появились мощные миниатюрные твердотельные лазеры. Во-вторых, тройной спектрометр удалось заменить значительно более простым, дешевым и компактным одиночным спектрометром благодаря появлению многослойных интерференционных фильтров с узкими спектральными характеристиками. В-третьих, за счет быстрого развития и оптимизации элементной базы

цифровых фотоаппаратов появились достаточно дешевые и миниатюрные высокочувствительные матричные фотодетекторы с низкими шумами и высоким разрешением. Именно эти три фактора обеспечили прорыв в приборостроении Рамановских спектрометров и ускорили развитие оптических методов экспресс-идентификации химических и биологических субстанций.

Небольшие габариты **настольного прибора** – всего 23x14,5x5,5 см позволят брать его с собой для проведения анализа в любое место (например, на склад). Для работы необходима управляющая станция на базе ПК или ноутбука, куда будет установлено ПО прибора, которое обеспечивает управление спектрометром, сбор данных и обработку полученных спектров. Специальные алгоритмы обработки обеспечивают надежный анализ как чистых химических веществ (идеальный вариант для прибора), так и несложных смесей, состоящих из небольшого количества компонентов.

Переносная (автономная) модель спектрометра RamanLife характеризуется возможностью работать от аккумулятора, что позволяет использовать его в любом месте по желанию оператора. Например, очень удобно производить контроль получаемого сырья прямо через упаковку на складе, без вскрытия упаковки, отбора пробы или транспортировки мешка/пакета до места установки настольного прибора.

Там, где необходимо не просто снять спектр комбинационного рассеяния, но и соотнести его с какой-то областью на поверхности образца – необходим рамановский микроскоп RamanLife. Прибор сочетает в себе функции как обычного оптического микроскопа, так и спектрометра комбинационного рассеяния света. Будучи оснащенным моторизованным автоматическим столиком-подвижкой (опция),

Переносной (автономный) спектрометр RamanLife

микроскоп способен строить 2D карту поверхности образца с максимальным разрешением 1,25 мкм, где каждой точке будет соответствовать свой рамановский спектр.

Основные технические характеристики рамановских блоков

	RL532	RL638	RL785	RL1064
Длина волны лазера, нм	532	638	785	1064
Мощность лазера, мВт	20	100	150	300
Спектральный диапазон, см-1	4000-160	4300-300	2300-200	1800-150
Разрешение, см-1	4-6	4-6	6-8	6-8
Тип детектора	ПЗС матрица			InGaAs
Диффракционная решетка	Голографическая			
Количество штрихов на миллиметр	1200	1200	1200	1200
Программное обеспечение	Служит для управления спектрометром, сбора данных и обработки полученных спектров. Полная база данных более 20000 спектров (покупается отдельно, для удобства разбита на разделы)			
Тип спектрометра	Настольный, переносной (автономный), микроскоп, микроскоп с двумя рамановскими модулями			

Диаэм, Москва ■ ул. Магаданская, д. 7, к. 3 ■ тел./факс: 8 (800) 234-0508 ■ sales@dia-m.ru

С.-Петербург spb@dia-m.ru

Казань

kazan@dia-m.ru

Ростов-на-Дону rnd@dia-m.ru

Новосибирск

nsk@dia-m.ru

Воронеж

vrn@dia-m.ru Екатеринбург ekb@dia-m.ru

Кемерово kemerovo@dia-m.ru

Йошкар-Ола

nba@dia-m.ru

krsk@dia-m.ru Нижний Новгород

nnovgorod@dia-m.ru

Красноярск

